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Abstract. We present a comparative study of the Hubbard and t − J models far away from half-filling.
We show that, at such fillings the t − J Hamiltonian can be seen as an effective model of the repulsive
Hubbard Hamiltonian over the whole range of correlation strength. Indeed, the |t/U | ∈ [0,+∞[ range of
the Hubbard model can be mapped onto the finite range |J/t| ∈ [2, 0] of the t − J model, provided that
the effective exchange parameter J is defined variationally as the local singlet-triplet excitation energy. In
this picture the uncorrelated limit U = 0 is associated with the super-symmetric point J = −2|t| and the
infinitely correlated U = +∞ limit with the usual J = 0 limit. A numerical comparison between the two
models is presented using different macroscopic and microscopic properties such as energies, charge gaps
and bond orders on a quarter-filled infinite chain. The usage of the t−J Hamiltonian in low-filled systems
can therefore be a good alternative to the Hubbard model in large time-consuming calculations.

PACS. 71.10.-w Theories and models of many-electron systems – 71.10.Fd Lattice fermion models

1 Introduction

In the last decade a renewed interest has been observed,
in the study of simple models such as the Heisenberg
model [1], Hubbard [2] or extended Hubbard model,
the t − J model [3], etc. This attraction is related to the
synthesis by solid state chemists in the last two decades,
of a large number of strongly correlated systems present-
ing very attractive low energy properties, often directly
linked to the correlation effects. It is enough to say that
these simple models are considered pertinent for the de-
scription of systems such as organic conductors [4] or
high Tc super-conductors [3] to understand the importance
of their study.

Among these models the Hubbard (or extended Hub-
bard) model is often considered as a reference since it
has been built to reproduce the physics over the whole
range of correlation strength, from delocalized to strongly
correlated systems. The other models, for instance the
spin models, are then considered as effective Hamilto-
nians of the Hubbard one under certain conditions. In
particular the spin models, Heisenberg and t − J , are
unanimously recognized as effective description of the va-
lence physics in the large correlation limit (U/t −→ ∞
where U is the on site Coulomb repulsion and t the near-
est neighbor hopping integral). Indeed, in a half-filled,
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one-band Hubbard model

HHub = t
∑
〈i,j〉

∑
σ

(
a†i,σaj,σ + a†j,σai,σ

)
+ U

∑
i

ni,↑ni,↓

(where a†i,σ, ai,σ and ni,σ are the usual creation, annihi-
lation and number operators of an electron of spin σ on
site i, and 〈i, j〉 symbolizes sites linked by the delocaliza-
tion process), the probability of a site double occupancy
rapidly decreases as 4t2/U2, in the large U/t regime. The
valence configurations involving sites double-occupancies
are therefore negligible and can be excluded from an ex-
plicit representation, provided that their effects on the
other configurations (involving only singly-occupied sites
or vacant sites) is reproduced. As it is well known, this is
exactly what is achieved by the Heisenberg Hamiltonian

HHeis = −J
∑
〈i,j〉

P (Si.Sj − 1/4 ninj)P

= −J
∑
〈i,j〉

P

(
a†i,↑a

†
j,↓ − a

†
i,↓a
†
j,↑√

2

)

×
(
ai,↑aj,↓ − ai,↓aj,↑√

2

)
P

= −J
∑
〈i,j〉

PSg†(i, j)Sg(i, j)P
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where Sg†(i, j) (resp. Sg(i, j)) is creating (annihilating) a
singlet on the i, j bond and P =

∏
i (11− ni↑ni↓) is the

projector over all configurations excluding the double oc-
cupancy of a site.

Doping the system in holes (resp. in electrons) adds a
new delocalization possibility for the particles which can
thus be described by the so-called t− J model

Ht−J = t
∑
〈i,j〉

∑
σ

P
(
a†i,σaj,σ + a†j,σai,σ

)
P

−J
∑
〈i,j〉

P (Si.Sj − 1/4 ninj)P

= t
∑
〈i,j〉

∑
σ

P
(
a†i,σaj,σ + a†j,σai,σ

)
P

−J
∑
〈i,j〉

P

(
a†i,↑a

†
j,↓ − a

†
i,↓a
†
j,↑√

2

)

×
(
ai,↑aj,↓ − ai,↓aj,↑√

2

)
P.

This simple derivation is very well known and the t − J
model is thus considered as the strongly correlated effec-
tive Hamiltonian of the Hubbard model away from half-
filling.

In this paper we would like to come back on this as-
sumption and show that the t − J model can be seen as
an effective model for the Hubbard Hamiltonian over the
whole range of correlation strength, provided that one is
far enough from half-filling.

The next section will be devoted to the physical justi-
fication and analytical development of the above assump-
tion using the effective Hamiltonian theory [5]. Section
three will assert the validity of the t − J versus Hub-
bard equivalence for low-filling systems through numerical
comparisons (energies, gaps, bond-orders) of a quarter-
filled dimerized chain in the Hubbard and t − J mod-
els, for the whole range of correlation and dimerization
strengths. Eventually the last section will discuss the lim-
itations of an effective Hamiltonian reduced to two-bodies
interactions.

2 A variational effective exchange integral

We would like to start by drawing the attention of the
reader on the reasons supporting the validity of the
Heisenberg Hamiltonian as an effective model of the Hub-
bard Hamiltonian in the strongly correlated limit. The
crucial point is that this is not the value of the correlation
strength which is important, but rather the fact that the
probability of sites double-occupancies is very small in the
ground state and low lying excited states wave functions.
The relevance of this distinction appears mainly away
from half-filling. Indeed, while in half-filled systems the
low probability of the double occupancy is a direct conse-
quence of the large correlation, far from half-filling this is
no longer the case. Actually, for low-filled systems (and

equivalently by hole particle symmetry for nearly-filled
systems) the configurations associated with site(s) double-
occupancies are negligible independently of the correlation
strength. One can indeed verify that even in the non in-
teracting regime (U = 0), where the double occupancies
on a site are the most probable over the whole range of
correlation strength, the wave-function of a η-filled sys-
tem yields a statistical weight for double occupancies on
a site of η2. Although it does correspond to a quite-large
contribution at half-filling (η2 = 1/4), it becomes rapidly
very small when the filling is reduced, with a value of
only η2 = 1/16 = 0.0625 for the quarter-filling case. Since
the electron-electron correlation can only reduce this num-
ber, it seems justified to exclude the explicit reference to
double-occupancies in the wave-function of low-filled (or
nearly-filled, using the hole/particle symmetry) systems.
However, as in the Heisenberg limit, simply projecting out
the double occupancies on a site would not give the correct
physics and the effects of these double occupancies on the
other states should be effectively reproduced. As we have
seen, this is exactly the role of the effective exchange in-
tegral in the Heisenberg model as well as the t−J model,
that is to lower the local singlet states compared to the lo-
cal triplet ones, setting the energy of the neutral represen-
tation of a local singlet

(
|ab̄〉 − |āb〉

)
/
√

2 to − J com-
pared to the local triplet

(
|ab̄〉+ |āb〉

)
/
√

2 that lies at 0.
In the strongly correlated limit the singlet-triplet excita-
tion energy is evaluated perturbatively. However, since we
would like to derive an effective model valid over the whole
range of correlation strength, perturbative evaluations of
the effective exchange have to be excluded. We will there-
fore use locally the principle of the effective Hamiltonian
theory [5] (reproduction by the effective Hamiltonian of
the exact eigen-energies and projection of the exact eigen-
states over the model space: HeffPΨexact = EexactPΨexact)
in order to derive a variational evaluation of the main ef-
fects of double-occupancies on a site (from now on denoted
as DOC) on the low energy states (for a more detailled de-
scription one can refer to Ref. [6]).

Summarizing the previous discussion we can conclude
that far away from half-filling, the configurations includ-
ing site(s) double-occupancies can be excluded from an
explicit treatment, provided that their main effect, the
lowering of the local singlets compared to the local triplets,
are reproduced by an effective exchange integral. We
therefore see that the Hubbard Hamiltonian can be mod-
eled by the t − J Hamiltonian in the low-filling regime,
providing a non perturbative effective exchange integral,
J(t, U). The simplest way to derive J(t, U) is to impose
that it reproduces the variational local singlet-triplet en-
ergy difference on a bond (two sites, two electrons). The
Hubbard model yields E(Sg) =

(
U −

√
U2 + 16t2

)
/2,

E(Tp) = 0, it comes

J(t, U) =
U −

√
U2 + 16t2

2
· (1)

Let us note that we retrieve for large values of t/U the
perturbative evaluation of J : −4t2/U as the first term of
the Taylor expansion in t/U . For the non-correlated limit
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the expansion should be done in terms of U/t and it yields

J =
U −

√
U2 + 16t2

2
' −2|t|

that is the value of J for the super-symmetric point. The
super-symmetric point of the t − J model (the only one
to be exactly soluble [7]) therefore appears as an effective
description — on the model space projecting out all site(s)
double-occupancies — for the tight-binding Hamiltonian.
In this perspective the results of Yokoyama et al. [8] about
the super-symmetric point properties showing that it re-
alizes a Fermi-Liquid state or free Luttinger liquid and
behaves in all points as a free-electrons gas seem quite nat-
ural. Meanwhile, the effective Hamiltonian theory states
that the ground-state wave-function of a properly defined
effective Hamiltonian should be the projection over the
model space of the exact Hamiltonian one [5]. This prop-
erty agrees nicely with the results of Yokoyama et al. [9]
that shows that the Gützwiller state is the ground state
of the t− J model at the super-symmetric point. In other
words the projection of the free-electron wave-function
onto the space excluding all double occupations on a site
is the t− J ground state for J(t, U = 0).

We would like to point out that the effective ex-
change J(t, U) valid to represent the repulsive Hubbard
model is boundered and varies from J(t, U = 0) = −2|t|
for the non correlated limit to J(t, U = ∞) = 0 for the
strongly correlated limit. Let us note that these bound-
aries excludes the whole range of parameters for which
phase separation phenomena occur. It should also be
noted that the arguments leading to the effective exchange
J(t, U) is not specific to the dimension one and should be
expected to hold in all dimensions, at least for non frus-
trated systems.

Apart from the effective exchange effect, it is known
from perturbative expansion at large correlation strength,
that the DOC induce effective 3 bodies interactions of
lesser importance.This point will be discussed in section
four and a way to obtain a variational evaluation of these
terms will be proposed.

3 The dimerized quarter-filled chain

In this section we will show numerically that the equiva-
lence between the Hubbard and t− J models really holds
for all values of the correlation strength and for all pos-
sible dimerizations. For this purpose we will compare the
following low energy properties of a quarter-filled chain in
the two models.

– The behavior of the total energy per site as a function
of t/U and the dimerization amplitude δ. This point
can be crucial for a good representation of phase transi-
tions in systems presenting a more complex topological
graph.

– The charge gap. This criterion will attest for a good
low energy spectroscopic behavior.

– The effective bond order, as it testifies for the wave
function behavior.
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Fig. 1. Energies per site as a function of U/(U + 4|tl|) and δ
for the Hubbard (stars) and t− J (circle) models, in tl units.

The calculations will be done using the infinite sys-
tems Density Matrix Renormalization Group (DMRG)
method [10]. We choose the number of states kept in the
renormalized blocks in such a way that for each model
the 10-sites system is treated exactly. The Hubbard model
will therefore be described with 256 states and the t − J
one with only 100 states. These numbers of states kept per
renormalized block correspond to a sum of the discarded
states weights always smaller than 1× 10−7, for the Hub-
bard model, and smaller than 1×10−5, for the t−J model.
These results are for small dimerization values and small
correlation values, that is for the most difficult cases in
terms of the DMRG algorithm convergence and precision.
These small values of the discarded states weight insures
the good convergence of our results, even-though we did
use the infinite size DMRG algorithm.

The dimerization amplitude is defined as

δ = (tl − tw) /tl

where tl is the large hopping integral and tw is the
weak one.

3.1 Energies per site

The energies per site have been extrapolated with re-
spect to the number of sites in the chain and are pre-
sented in Figure 1 as a function of the correlation strength
U/(U + 4 | tl |). Different values of the dimerization fac-
tor δ have been investigated starting from the weakly
dimerized chain δ = 0.05 up to the strongly dimerized
one δ = 0.75.

We see in Figure 1 that the agreement between the two
models is quite good. Both the variations as a function of
the correlation strength and the dimerization amplitude
are well reproduced. The maximal relative error between
the Hubbard and t−J total energies per site is only 0.03.
As expected, the large U/ | tl | asymptotic limit is well re-
produced by the t−J model for all values of the dimeriza-
tion. A little less obvious is the very good numerical accu-
racy found for the non-interacting limit. The relative error
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found between our computed t−J values and the exact free
electron solution is bounded by 0.004 and can probably
be imputed for its greatest part to the DMRG procedure
(which is known to have its worse convergence properties
for the non correlated limit). Actually, the largest errors
occur in the region of intermediate correlation strength
(U/t ' 4) and for small dimerization. As the dimeriza-
tion increases and for a given U/t ratio, the t − J model
fits better and better the Hubbard one. This point can be
easily understood if one remembers that the three bodies
terms, neglected in the t−J Hamiltonian, should decrease
as a function of the dimerization amplitude.

3.2 Charge gaps

We computed the charge gaps ∆ρ, as the extrapolated
difference toward the infinite system limit, between the
ionization potential (IP) and the electron affinity (EA).
If E(Nsite, Ne) is the energy of a finite Nsite sites sys-
tem with Ne electrons, the charge gap is written as the
following:

∆ρ = lim
Nsite−→∞

{E(Nsite;Nsite/2 + 1) +

E(Nsite;Nsite/2− 1)− 2E(Nsite;Nsite/2)} ·

The Hubbard and t− J gaps are presented in Figure 2 as
a function of the correlation strength U/(U + 4 | tl |), and
for 4 different values of δ.

One sees immediately that the dimerization gaps ex-
hibit the same general behavior for the Hubbard and
the t − J model. The response both as a function of the
dimerization amplitude and the correlation strength are
very similar and quite close in absolute values even if the
gaps are slightly larger in the t − J model than in the
Hubbard one. For the large U asymptote in the Hubbard
model, it is noticeable that the DMRG procedure fails to
gives good estimations of the dimerization gaps. This fail-
ure has already been observed [11] and may find its origin
in a lack of numerical accuracy when the absolute val-
ues involved in the gap calculations become too large. For
large-U and large-δ, Penc and co-workers [12] have shown
that the charge gaps are expected to coincide with a 2× δ
asymptote. It can be seen from Figure 2 that this large-U
limit is rather well verified even for intermediate δ. It is
noticeable that in the non-interacting limit the t−J effec-
tive model exhibits the proper exponential behavior as a
function of the correlation strength and the dimerization
amplitude.

3.3 Bond orders

We computed the bond orders for the Hubbard model
and t − J model. However one can expect that the elim-
ination of the explicit reference to the DOC in the wave-
function will strongly affect the values of the bond order.
Indeed, over a 〈i, j〉 bond, the different configurations that
contribute to the bond order are
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Fig. 2. Charge gaps ∆ρ in tl units calculated within the
Hubbard and t−J models. Each curve corresponds to a differ-
ent value of δ, going from the weakly dimerized limit δ = 0.05
to the strongly dimerized one δ = 0.75

– the local one-electron doublets which are explicitly
treated in the t− J model, and contribute for 1/2 for
the bonding one and −1/2 for the anti-bonding one,

– the local triplet which is explicitly treated in the t− J
model and has a zero contribution to the bond-order,

– the essentially neutral, ground state singlet which is
effectively treated in the t− J model and has a zero
contribution to the bond-order when the DOC states
are ignored, but has a real contribution of 4|t|√

U2+16t2
=

2|tJ|
t2+J2 when the DOC are taken into account,

– the essentially ionic singlets that are ignored in
the t− J model since their contribution is very small
in the wave function and has a real contribution to the
bond order of −4|t|√

U2+16t2
= −2|tJ|

t2+J2 for the symmetric one
and of 0 for the antisymmetric one,

– the three electrons doublets that are ignored in
the t− J model because of their very low occurrence
in the system wave function and should have a contri-
bution to the bond order of 1/2 for the bonding one
and of −1/2 for the anti-bonding one.
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Fig. 3. Bond orders p calculated within the Hubbard model
and renormalized bond order calculated within the t−J model.
Circles correspond to the short bonds (SB) and stars to the
long bonds (LB).

One sees immediately that in order to have a reasonable
evaluation of the bond order in the t−J model one should
at least add an effective term setting up to the correct
value the contributions of the quite probable local neu-
tral singlets. We will therefore define the effective t − J
bond order as the true t − J bond order plus the exact
contribution of the essentially neutral singlets, that is

p̂ =
1
2

∑
〈i,j〉

∑
σ

(
a†i,σaj,σ + a†j,σai,σ

)
+

2|tJ |
t2 + J2

∑
〈i,j〉

Sg†(i, j)Sg(ij)·

Figure 3 shows the bond-order for the Hubbard model
and the effective bond-order for the t − J model, for
the whole range of correlation strength and dimeriza-
tion values.

The effective bond order of the t−J model behaves rea-
sonably well both as a function of the correlation strength
and the dimerization. Both the strongly correlated limit
and the U = 0 limit of the Hubbard model are very well

reproduced by the t − J model. As for the energies, the
major discrepancies between the two models are in the
moderately delocalized regime, typically between U/t = 2
and U/t = 4, and for low dimerizations where the effec-
tive t− J bond order is slightly too rapidly decreasing.

One can conclude from the previous results that
the t− J model reproduces quite well the low energy
physics of the Hubbard model in the low filling regime,
over the whole range of the correlation strength, provided
that the exchange integral as well as the other observ-
ables are defined so that to effectively take into account
the main effects of the DOC states.

4 The three bodies terms

From the perturbative expansion of the Hubbard model
in the strong correlation limit, we know that the exact
effective model excluding all DOC states should involve
three, four, . . . , n bodies terms. After the dominant first
neighbor effective exchange of the t − J model, second
neighbor hopping and three bodies terms appear at the
second order of perturbation. These secondary terms
which are negligible near the complete or the very low
fillings have a maximal probability of occurrence at 1/3
filling (at U = 0). However their relative importance
compared to the local singlet or triplet terms raises as
(1−η)2 as a function of the filling η. In the very low filling
regime, these terms are therefore negligible, however in
the same way as the local singlets and triplets. In the
low, but not too low filling regime, one can expect that
these terms may account for some secondary corrections.
Indeed, in the 1/4-filling regime used to exemplify this
work, they have (for U = 0) a total probability of
occurrence of 0.0198. One can therefore expect that
these terms may account for a large amount of the small
quantitative discrepancies observed between the Hubbard
and effective t− J models. Therefore, if one would like a
more quantitative representation of the Hubbard model
on the states excluding all double occupancies on a
site, one should add to the t − J Hamiltonian a second
neighbor hopping and a three body term.

H3b = t
∑
〈i,j〉

∑
σ

P
(
a†i,σaj,σ + a†j,σai,σ

)
P

−J/2
∑
〈i,j〉

P (a†i,↑a
†
j,↓−a

†
i,↓a
†
j,↑)(ai,↑aj,↓ − ai,↓aj,↑)P

+t2
∑
〈i,j,k〉

∑
σ

P
(
a†i,σak,σ+a†k,σai,σ

)
nj,σ̄(1−nj,σ)P

+K
∑
〈i,j,k〉

P
(
a†i,σak,σ̄+a†k,σai,σ̄

)
a†j,σ̄aj,σ(1−nj,σ̄)P

where the sum over 〈ijk〉 runs over all three nearest
neighbor sites. As for the effective exchange J(t, U) of the
t − J Hamiltonian, the J , t2 and K parameters of H3b
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can be variationally derived as a function of Hubbard t
and U , from the low energy spectroscopy (between the six
essentially neutral states) of the three sites, two electrons
fragment. It comes

J =
U

2
−
√
U2 + 16t2 +

√
U2 + 8t2

4

t2 = −K =
√
U2 + 16t2 −

√
U2 + 8t2

8
·

It should be noted that we are no more in a t − J
model and that the free electrons system now maps onto
a three body model with parameters J = (1 +

√
2) |t|,

t2 = (1−
√

2)/2 |t| and K = −(1−
√

2)/2 |t|.

5 Conclusion

The t− J model is a well known effective Hamiltonian of
the Hubbard model in the strongly correlated limit. We
have shown in this paper that the t−J model can be seen
as such, as long as the double occupancies of a site have a
very low probability of occurrence in the ground and low
excited states of the system. This is in particular the case
for low filled bands (or nearly filled band using electron-
hole symmetry), whatever the value of the correlation
strength. We have proposed a variational evaluation
of the effective exchange J(t, U) so that it insures the
proper excitation energy between the local singlets and
triplets. Using this effective t − J(t, U) model, we have
shown on an infinite quarter filled chain, that the total
energy per site, the charge gaps as well as the bond-orders
behave similarly than in the Hubbard model, over the
whole range of correlation strength and dimerization. The
agreement is not only qualitative, but also quantitative,
the small discrepancies seen in the intermediate low (but
not too low) correlation regime being analyzed as due
to the neglected three bodies terms. It is interesting to
point out that the super-symmetric point of the t − J

model corresponds to the effective representation of the
uncorrelated limit, U = 0, yielding as a natural conse-
quence to the effective Hamiltonian theory, its surprising
Fermi liquid behavior.
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